MA 242 : Partial Differential Equations (August-December, 2018)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore

Problem set 5

1. (a) Drive D'Alambert formula for the solution of

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=0, \quad \text { in } \mathbb{R} \times(0, \infty) \tag{1}\\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x) \text { in } \mathbb{R} .
\end{array}\right.
$$

Explain Domain of dependence, Range of influence, Domain of Determinacy.
(b) $\operatorname{Suppose} \operatorname{supp}(f), \operatorname{supp}(g) \subset[a, b]$. Find the $\operatorname{Supp}\left(u\left(\cdot, t_{0}\right)\right)$ for any time t_{0}.
2. Derive the solution for the equation (1) in a semi-infinite string.
3. Apply Duhamel's principle to find the solution formula for

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=h(x), \quad \text { in } \mathbb{R} \times(0, \infty) \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x) \text { in } \mathbb{R}
\end{array}\right.
$$

4. Solve the problem with two different characteristic speeds c_{1} and c_{2} : that is

$$
\left\{\begin{array}{l}
\left(\frac{\partial}{\partial t}-c_{1} \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-c_{2} \frac{\partial}{\partial x}\right) u=0, \text { in } \mathbb{R} \times(0, \infty) \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x) \text { in } \mathbb{R} .
\end{array}\right.
$$

Study the formula for two different cases $c_{1} \neq c_{2}$ and $c_{1}=c_{2}$ and also derive D'Alambert formula as a special case. See, any of loss of regularity in one-dimensional case.
5. Integrate the wave equation $u_{t t}-u_{x x}=f(x, t)$ in the characteristic triangle $P(x, t), Q(x-$ $c t, 0), R(x+c t, 0)$ to derive a formula for the solution (Hint: You may write $u_{t t}-u_{x x}=$ $\left.\left(u_{t}\right)_{t}-\left(u_{x}\right)_{x}\right)$.
6. Solve the wave equation in the first quadrant with non-homogeneous Dirichlet boundary condition ; that is

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=0, \quad \text { in }(0, \infty) \times(0, \infty) \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x) \text { in } \mathbb{R} \\
u(0, t)=h(t), \quad t>0
\end{array}\right.
$$

using the general solution. Derive also the formula for $x<c t$ using the parallelogram identity.
7. Solve the above equation with the Neumann non-homogeneous boundary condition, that is $u(0, t)=h(t)$ is replaced by $u_{x}(0, t)=h(t)$.
8. Let c_{1}, \cdots, c_{k} distinct positive real numbers. Show that the solution of the equation

$$
\left(\partial_{t}^{2}-c_{1}^{2} \partial_{x}^{2}\right) \cdots\left(\partial_{t}^{2}-c_{k}^{2} \partial_{x}^{2}\right) u=0
$$

can be written as

$$
u(x, t)=\sum_{j=0}^{k} u_{j}(x, t)
$$

where u_{j} satisfies $\partial_{t}^{2} u_{j}-c_{j}^{2} \partial_{x}^{2} u_{j}=0$. The above is also true for n -dimensional case.
9. Let $n=3$ and consider $\left(\partial_{t}^{2}-c^{2} \partial_{x}^{2}\right)\left(\partial_{t}^{2}-c^{2} \partial_{x}^{2}\right) u=0, c>0$. Taking smooth data for $\partial_{t}^{j} u(x, 0)=f_{j}(x), j=0,1,2,3$, write down the solution explicitly.
10. Consider the problem

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=0, \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{2}\\
u(x, 0)=\phi(x), u_{t}(x, 0)=\psi(x) \text { in } \mathbb{R}^{n}
\end{array}\right.
$$

Let u^{ϕ} be the solution with initial data

$$
u^{\phi}(x, 0)=\phi(x), \quad u_{t}^{\phi}(x, 0)=0
$$

and v^{ψ} be the solution with initial data

$$
v^{\psi}(x, 0)=0, \quad v_{t}^{\psi}(x, 0)=\psi(x)
$$

Verify that the solution of (2) is given by

$$
u(x, t)=u^{\phi}(x, t)+\int_{0}^{t} u^{\psi}(x, s) d s
$$

and also

$$
u(x, t)=v^{\psi}(x, t)+\frac{\partial}{\partial t} v^{\phi}(x, t)
$$

11. Explain the domain of dependence, range of influence for dimension $n=3$ and $n=2$ by writing down the formula for the solution. Find $\operatorname{supp}\left(u\left(\cdot, t_{0}\right)\right)$ if $\operatorname{supp}(f), \operatorname{supp}(g)$ $\subset B\left(x_{0}, \rho\right)$.
12. Derive the Poisson formula for $n=2$ by the Hadamard's method of decent from the Kirchoff's formula for $n=3$.
13. Explain Huygen's Principle for $n=3$.
14. Find the solution

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=0 \text { in }(0, \infty) \times(0, \infty) \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x), \text { in } \mathbb{R} \\
u_{x}(0, t)=0, \text { for } t>0
\end{array}\right.
$$

(Hint: Use even extension of g, h)
15. Let Ω is a bounded smooth open subset of \mathbb{R}^{n}. Consider the following wave equation

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=f \text { in } \Omega \times(0, T) \\
u=g \text { on } \Gamma_{T} \\
u=h \text { on } \Omega \times\{t=0\}
\end{array}\right.
$$

Define the "energy" as

$$
e(t)=\int_{\Omega} u_{t}^{2}+|\nabla u|^{2} d x
$$

Using the energy, show that the above wave equation has at most one solution.

